Author:
Chen Jin,Zhu Fuhao,Guan Zhuohuai,Zhu Yahui,Shi Hao,Cheng Kai
Abstract
Recently, the existing unmanned systems of combine harvesters mostly adopts satellite navigation scheme, lacking real-time observation of harvesting adjustment. To improve the operational efficiency of combine harvester assisted navigation operation, this paper designs a combine harvester navigation control system based on vision simultaneous localization and mapping (SLAM)-inertial guidance fusion. The system acquires field image information and extracts the crop boundary line as the navigation datum by binocular camera. First, the system acquires field image information through binocular camera and extracts the crop boundary line as the navigation datum. Second, fusing camera and inertial guidance information to obtain the real-time relative position of a combine harvester. Third, constrained optimization of image and inertial guidance information is achieved through a sliding window optimization method based on tightly coupled nonlinear optimization. Finally, obtain the position of the combine harvester relative to the navigation datum line, and output a signal to the steering mechanism to realize the combine harvester in the field intelligent positioning navigation control. The system consists of binocular camera, inertial measurement unit, motorized steering wheel, monitor display, angle sensor and microcontroller. During field testing, the system underwent repetitive harvesting trials over a distance of 25 m.. The testing machine performs field operations at a speed of 0.9-1.5 m/s, with an average lateral deviation range of 2.21-8.62 cm, a standard deviation range of 0.13-4.21 cm and an average cutting rate range of 92.2%-96.0%, achieving the expected harvesting effect.
Reference34 articles.
1. Campos C, Elvira R, JJG Rodríguez, et al. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. 2020.
2. Cariou C, Berducat M, Lenain R, et al. Automatic Guidance of Farm Vehicles[J]. Springer Netherlands, 2003.
3. Cheng Chuanqi, Hao Xiangyang, Li Jiansheng, et al. Monocular visual-inertial navigation based on nonlinear optimization[J]. Journal of Chinese Inertial Technology, 2017,25(05):643-649. (in Chinese with English abstract)
4. DAVID B, BEN U, GORDON W, et al. Vision-based obstacle detection and navigation for an agricultural ro‐bot[J]. Journal of Field Robotics, 2016, 33(8): 1107-1130.
5. Ding Youchun, Xia Zhongzhou, Peng Jingye, et al. Design and experiment of the single-neuron PID navigation controller for a combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 34-42. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.07.004 http://www.tcsae.org