Development of a combined harvester navigation control system based on visual simultaneous localization and mapping-inertial guidance fusion

Author:

Chen Jin,Zhu Fuhao,Guan Zhuohuai,Zhu Yahui,Shi Hao,Cheng Kai

Abstract

Recently, the existing unmanned systems of combine harvesters mostly adopts satellite navigation scheme, lacking real-time observation of harvesting adjustment. To improve the operational efficiency of combine harvester assisted navigation operation, this paper designs a combine harvester navigation control system based on vision simultaneous localization and mapping (SLAM)-inertial guidance fusion. The system acquires field image information and extracts the crop boundary line as the navigation datum by binocular camera. First, the system acquires field image information through binocular camera and extracts the crop boundary line as the navigation datum. Second, fusing camera and inertial guidance information to obtain the real-time relative position of a combine harvester. Third, constrained optimization of image and inertial guidance information is achieved through a sliding window optimization method based on tightly coupled nonlinear optimization. Finally, obtain the position of the combine harvester relative to the navigation datum line, and output a signal to the steering mechanism to realize the combine harvester in the field intelligent positioning navigation control. The system consists of binocular camera, inertial measurement unit, motorized steering wheel, monitor display, angle sensor and microcontroller. During field testing, the system underwent repetitive harvesting trials over a distance of 25 m.. The testing machine performs field operations at a speed of 0.9-1.5 m/s, with an average lateral deviation range of 2.21-8.62 cm, a standard deviation range of 0.13-4.21 cm and an average cutting rate range of 92.2%-96.0%, achieving the expected harvesting effect.

Publisher

PAGEPress Publications

Reference34 articles.

1. Campos C, Elvira R, JJG Rodríguez, et al. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. 2020.

2. Cariou C, Berducat M, Lenain R, et al. Automatic Guidance of Farm Vehicles[J]. Springer Netherlands, 2003.

3. Cheng Chuanqi, Hao Xiangyang, Li Jiansheng, et al. Monocular visual-inertial navigation based on nonlinear optimization[J]. Journal of Chinese Inertial Technology, 2017,25(05):643-649. (in Chinese with English abstract)

4. DAVID B, BEN U, GORDON W, et al. Vision-based obstacle detection and navigation for an agricultural ro‐bot[J]. Journal of Field Robotics, 2016, 33(8): 1107-1130.

5. Ding Youchun, Xia Zhongzhou, Peng Jingye, et al. Design and experiment of the single-neuron PID navigation controller for a combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 34-42. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.07.004 http://www.tcsae.org

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3