Author:
Yu Xin,Zhao Ling,Liu Zongbin,Zhang Yiqing
Abstract
Wuyuan green tea is a famous agricultural product in China and a product protected by national geo-graphical indications. The processed green tea also needs to remove impurities, such as stones, tea stalks, etc. However, tea stalks cannot be classified from Wuyuan green tea using photoelectric sorting and 2D image recognition technology since they have similar colors. This paper adopts hyperspectral imaging technology to solve the problem of inaccurate sorting caused by their similar colors. Green tea containing tea stalks was imaged using a visible and near-infrared camera with a wavelength of 400nm-1000nm. What’s more, Principal Component Analysis (PCA) was adopted to reduce the dimension of the col-lected hyperspectral image. And the Convolutional Neural Network (CNN) was used constructively to identify tea stalks in hyperspectral image, the CNN can automatically learn the corresponding features, avoid the complex feature extraction process. The experimental results showed that the recognition accuracy for tea stalks reaches 98.53%. The method has a high recognition rate and can meet the actual production requirements. After field testing, the selection rate is as high as 97.05%.
Reference20 articles.
1. Chen P., Wu T. Detection of impurities in tea using Hough transform after removing shadows[J]. Mechanical Engineering and Automation, 2014(05): 63-65.
2. Chen S., Zhang C. A fast image sorting method of tea stalk color sorter[J]. Journal of Hefei Univer-sity(Natural Science Edition), 2013, 23(04): 36-41.
3. Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE geoscience and remote sensing letters, 2009, 6(4): 772-776.
4. ElMasry G, Sun D W. Principles of hyperspectral imaging technology[M]. Hyperspectral imaging for food quality analysis and control. Academic Press, 2010: 3-43.
5. Fu L, Okamoto H, Shibata Y, et al. Distinguishing overripe berries of Japanese blue honeysuckle using hyperspectral imaging analysis[J]. Engineering in agriculture, environment and food, 2014, 7(1): 22-27.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献