Residual attention based multi-label learning for apple leaf disease identification

Author:

Zhou Changjian,Zhao Zhenyuan,Chen Wenzhuo,Feng Yuquan,Song Jia,Xiang Wensheng

Abstract

Recent studies suggest that plant disease identification via machine learning approach is vital for preventing the spread of diseases. Identifying multiple diseases simultaneous on a single leaf is one of the most irritating issues in agricultural production. However, the existing approaches are difficult to meet the requirements of production practice in accuracy or interpretability. Here, we present residual attention based multi-label learning framework (RAMDI), a method for predicting apple leaf diseases in natural environment. Built upon an attention based multi-label learning framework, the channel and spatial attention mechanisms are investigated and embedded in residual network for multi-label disease prediction, which takes advantage of channel-wise and spatial-wise attention weights. Experimental results indicate that the RAMDI achieves 0.976 accuracy, 0.986 F-score, and 0.979 mAPs, outperforms the existing state-of-the-art apple leaf disease identification models. RAMDI not only predicts multi-disease on a single leaf simultaneously, but also reveals the interpretability among positive predictions that contribute most to identify the key features that are significant for the leaf diseases. This method achieves the following two achievements. Firstly, it provides a solution for detecting multiple diseases on a single leaf. Secondly, this approach gains an interpretable understanding for apple leaf disease identification.

Publisher

PAGEPress Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3