Effect of additional carbon source on biodegradation of linear alkylbenzene sulfonate by las-utilizing bacteria

Author:

Eniola Kehinde I. Temitope

Abstract

Aerobic biodegradation of linear alkylbenzene sulfonate (LAS) by LAS-utilizing bacteria (LUB) in the presence of other sources of carbon (glucose and soluble starch) was examined. Biodegradation of LAS was monitored as primary degradation in terms of half-life (t½) of the surfactant. Biodegradation of LAS by the individual LUB was slower in the presence of Glucose. Biodegradation of the surfactant by the various consortia of LUB was slower in the presence of the carbon sources: t½ increased to 3 days. The rates of biodegradation by the consortia can be ranked as: four-membered (t½=9 days) > three-membered (t½=9 to 13 days) > two-membered consortia (t½=10 to 15 days). Generally, degradation in the presence of the carbon sources was faster with the consortia than the individual species. Degradation of the surfactant by the LUB was generally fastest in the absence of additional carbon sources. The possible role of additional carbon sources in persistence of surfactant in water bodies and the application of the observation in management of LAS-containing-effluent is suggested.

Publisher

MDPI AG

Subject

Pollution,Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3