Protective head-cooling during cardiac arrest and cardiopulmonary resuscitation: the original animal studies

Author:

Brader Eric W.,Jehle Dietrich,Mineo Michael,Safar Peter

Abstract

Prolonged standard cardiopulmonary resuscitation (CPR) does not reliably sustain brain viability during cardiac arrest. Pre-hospital adjuncts to standard CPR are needed in order to improve outcomes. A preliminary dog study demonstrated that surface cooling of the head during arrest and CPR can achieve protective levels of brain hypothermia (30°C) within 10 minutes. We hypothesized that protective head-cooling during cardiac arrest and CPR improves neurological outcomes. Twelve dogs under light ketamine-halothane-nitrous oxide anesthesia were arrested by transthoracic fibrillation. The treated group consisted of six dogs whose shaven heads were moistened with saline and packed in ice immediately after confirmation of ventricular fibrillation. Six control dogs remained at room temperature. All 12 dogs were subjected to four minutes of ventricular fibrillation and 20 minutes of standard CPR. Spontaneous circulation was restored with drugs and countershocks. Intensive care was provided for five hours post-arrest and the animals were observed for 24 hours. In both groups, five of the six dogs had spontaneous circulation restored. After three hours, mean neurological deficit was significantly lower in the treated group (P=0.016, with head-cooled dogs averaging 37% and the normothermic dogs 62%). Two of the six head-cooled dogs survived 24 hours with neurological deficits of 9% and 0%, respectively. None of the control group dogs survived 24 hours. We concluded that head-cooling attenuates brain injury during cardiac arrest with prolonged CPR. We review the literature related to the use of hypothermia following cardiac arrest and discuss some promising approaches for the pre-hospital setting.

Publisher

MDPI AG

Subject

Clinical Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3