Pharmacological inhibition of ictal and interictal epileptiform discharges

Author:

Sardo StefanoORCID,Piras BarbaraORCID

Abstract

Background: Epilepsy is a brain disorder characterized by an enduring predisposition to generate epileptic seizures. Seizures are a transient occurrence of signs and/or symptoms due to abnormal excessive and synchronous neuronal activity in the brain. Electroencephalogram (EEG), a non-invasive instrumental test, has an important role in the diagnosis of epilepsy, as well as in monitoring the results and long-term treatment because it can detect interictal and ictal discharges that are crucial for confirmation and classification of seizures. Antiepileptic drugs are the first treatment option in patients with epilepsy, although the effectiveness of such drugs is limited only to symptom control and requires a regular intaking by the patient. These drugs exploit the cell membrane channels, modifying their permeability, allowing either an increase in the inhibitory neurotransmission or the reduction in the excitatory one, by hyperpolarizing neurons and avoiding the recurrence of the epileptic seizures without reversing or stopping the underlying mechanism of epileptogenesis. Materials and Methods: The internship took place in the Neurophysiopathology department of the Antonio, Biagio and Cesare Arrigo’s hospital in Alessandria, from October 2022 to March 2023. During this period, it was possible to attend the emergency treatment of prolonged and recurrent epileptic seizures during EEGrafic recording and the consequential amendments of the ictal discharges induced by the administration of antiepileptic drugs. Follow up EEG was also performed to investigate the modifications of interictal activity after a period of treatment with antiepileptic drugs. The patient who has been analyzed in this paper, underwent EEG recordings obtained by using bridge electrodes placed on the scalp according to the international 10-20 system. Objectives: The aim of this study is to analyze the mechanisms of action of the main antiepileptic drugs, in relation to the physiological cellular mechanisms regulating the neuronal excitability and their effect on the ictal and interictal epileptiform discharges in the EEG recordings.

Publisher

PAGEPress Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3