Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs

Author:

Xu Xinyu,Shi Jiayu,Zhang ChuanweiORCID,Shi Lixin,Bai Yujie,Shi Wei,Wang Yuliang

Abstract

The purpose of the study was to investigate the effect of artificial light with different spectral composition and distribution on axial growth in guinea pigs. Three-week-old guinea pigs were randomly assigned to groups exposed to natural light, low color temperature light-emitting diode (LED) light, two full spectrum artificial lights (E light and Julia light) and blue light filtered light with the same intensity. Axial lengths of guinea pigs’ eyes were measured by A-scan ultrasonography prior to the experiment and every 2 weeks during the experiment. After light exposure for 12 weeks, retinal dopamine (DA), dihydroxy-phenylacetic acid (DOPAC) levels and DOPAC/DA ratio were analyzed by high-pressure liquid chromatography electrochemical detection and retinal histological structure was observed. Retinal melanopsin expression was detected using western blot and immunohistochemistry. After exposed to different kinds of light with different spectrum for 4 weeks, the axial lengths of guinea pigs’ eyes in LED group and Julia light group were significantly longer than those of natural light group. After 6 weeks, the axial lengths in LED light group were significantly longer than those of E light group and blue light filtered group. The difference between axial lengths in E light group and Julia light group showed statistical significance after 8 weeks (p<0.05). After 12 weeks of light exposure, the comparison of retinal DOPAC/DA ratio and melanopsin expression in each group was consistent with that of axial length. In guinea pigs, continuous full spectrum artificial light with no peak or valley can inhibit axial elongation via retinal dopaminergic and melanopsin system.

Publisher

PAGEPress Publications

Subject

Cell Biology,Histology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3