Rapid assessment of fertilizers manufacturing methods by means of a novel waveguide vector spectrometer

Author:

Iaccheri EleonoraORCID,Berardinelli Annachiara,Ciavatta ClaudioORCID,Ragni LuigiORCID

Abstract

This study aims to test the suitability of a waveguide spectrometer, as a rapid and cheap tool to discriminate between different fertilizers according to two different manufacturing methods, such as granulation and blending. The tested instrument is a waveguide vector spectrometer, patented in 2016, that operates in the range 1.6-2.7 GHz, giving both spectral phase and gain measurements. Granulated and blended fertilizers were dehydrated and pulverized to avoid possible interferences due to the water content and the geometry of the sample. The spectral data were analysed by multivariate statistical analysis [principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA)] in order to obtain a discrimination tool considering the whole hidden spectral information. PC1 (95% of the explained variance) and PC2 (4% of the explained variance) are shown to explain most of the spectral variability. A tendency to group samples according to the different production methods can be seen, even if the discrimination is influenced by the different chemical compositions of fertilizers. However, PLS-DA models correctly classified 100% of the samples into granulated and blended classes using spectra obtained by waveguide spectroscopy. Despite being preliminary, the tests carried out on a small number of samples show how the technique coupled with PLS-DA models could be able to discriminate between the analysed fertilizers by means of their spectral signature and according to the manufacturing method, if the chemical composition is kept constant. Further tests are necessary to validate the model, also considering the possibility of grouping fertilizers on the basis of their similar composition.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3