Application of QUAL2Kw to the Oglio River (Northern Italy) to assess diffuse N pollution via river-groundwater interaction

Author:

Taherisoudejani Hajar,Racchetti Erica,Celico Fulvio,Bartoli MarcoORCID

Abstract

Water quality modeling is increasingly recognized as a useful tool for obtaining valuable information for optimal water quality management. In this study, the free software QUAL2Kw was used to evaluate the impacts of agricultural nitrogen (N) excess on river nitrate (NO3-N) concentrations. We explored the possibility to use QUAL2Kw in order to back calculate the exchange of water and N from the groundwater to the Oglio River, northern Italy, which drains a heavily irrigated and fertilized agricultural land. Along the river course water monitoring activities carried out in the dry, summer period revealed steep increases of NO3-N in different sectors, by up to 2 orders of magnitude, not explained by any significant point inputs. Such increases suggest the occurrence of large water exchange with nitrate-polluted groundwater and diffuse inputs. In turn, groundwater pollution is due to high N excess in the watershed (~200 kg N ha-1 yr-1), flood-based irrigation techniques and soil permeability. The QUAL2Kw model was calibrated using the average of 2 years' data collected in winter 2010 and 2011 and validated using the data of winter 2012. To minimize the error between simulation results and measured data, the constants of inorganic suspended solid (ISS), ammonium (NH4-N), nitrate and organic N were calibrated. The calibration and validation results showed a good correspondence between the calculated and measured values for most of water-quality variables. QUAL2Kw was then run separately with three years' summer data (2009, 2010 and 2011), and large gaps were found between the measured and predicted values of discharge, electrical conductivity, NO3-N and total N. Such gaps are discussed in terms of river-groundwater interactions, limited to the summer period and following irrigation by flooding, rise of the groundwater table and vertical transport of N. The gaps allowed to back calculate the volumes of water and the amount of N exchanged. The total load of NO3-N entering into the river from groundwater was estimated in 25.17, 25.63 and 29.89 ton per day for NO3-N in 2009, 2010 and 2011, respectively. Similar results were obtained in another study based on mass balance of N isotopes. The combination of experimental and QUAL2Kw modelled data proved to be a simple, low cost but effective tool in the estimation of NO3-N exchange between the surface and groundwater.

Publisher

PAGEPress Publications

Subject

Water Science and Technology,Ecology,Aquatic Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3