Spatial analysis and prediction of the flow of patients to public health centres in a middle-sized Spanish city

Author:

Ramos Isabel,Cubillas Juan J.,Feito Francisco R.,Ureña Tomas

Abstract

Human and medical resources in the Spanish primary health care centres are usually planned and managed on the basis of the average number of patients in previous years. However, sudden increases in patient demand leading to delays and slip-ups can occur at any time without warning. This paper describes a predictive model capable of calculating patient demand in advance using geospatial data, whose values depend directly on weather variables and location of the health centre people are assigned to. The results obtained here show that outcomes differ from one centre to another depending on variations in the variables measured. For example, patients aged 25-34 and 55-65 years visited health centres less often than all other groups. It was also observed that the higher the economic level, the fewer visits to health centres. From the temporal point of view, Monday was the day of greatest demand, while Friday the least. On a monthly basis, February had the highest influx of patients. Also, air quality and humidity influenced the number of visits; more visits during poor air quality and high relative humidity. The addition of spatial variables minimised the average error the predictive model from 7.4 to 2.4% and the error without considering spatial variables varied from the high of 11.8% in to the low of 2.5%. The new model reduces the values in the predictive model, which are more homogeneous than previously.

Publisher

PAGEPress Publications

Subject

Health Policy,Geography, Planning and Development,Health (social science),Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3