Vancomycin and high-level aminoglycoside resistance in Enterococcus species

Author:

Ozarslan Kurtgoz Seyda,Ozer Burcin,Inci Melek,Duran Nizami,Yula Erkan

Abstract

The aim of the study was to investigate vancomycin and high-level aminoglycoside resistance (HLAR) in <em>Enterococcus</em> species by phenotypic and genotypic methods. A hundred <em>Enterococcus</em> strains were included in the study. Antimicrobial susceptibilities of strains were investigated by automated system, betalactamase production was investigated by nitrocefin disks, vancomycin resistance and HLAR were investigated by gradient diffusion method (GDM) and disk diffusion method, respectively. For detection of vancomycin and high-level gentamicin resistance (HLGR) genes, polymerase chain reaction was used. Teicoplanin linezolid, vancomycin, ampicillin, penicillin are the most susceptible antibiotics and strains were detected not to produce beta lactamase. Vancomycin resistance was detected in ten isolates by automated system and in only five isolates by GDM. Five isolates carrying <em>VanA</em> gene were determined. The ratio of HLGR and high-level streptomycin resistance was found 40 and 63% respectively. <em>aac (6’)-1eaph (2’’)-1a</em> gene was detected in 58% of strains. <em>E. faecium</em> strains were found more resistant to the antibiotics than the other species. Beta lactamase was detected in none of strains. The automated system detected vancomycin resistance in more strains than GDM. Therefore it is concluded that strains, which were detected to be resistant to vancomycin, should be confirmed by GDM. The ratio of <em>VanA</em> gene in strains is consistent with other studies. The HLAR ratio was found in about half of strains. The ratio of<em> aac(6’)-1e-aph(2’’)-1a</em> gene, which is the most reported gene in our country and other countries and one of the HLGR genes investigated in our study, was detected 58%.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3