Author:
Danková Marianna,Domoráková Iveta,Fagová Zuzana,Stebnický Milan,Kunová Alexandra,Mechírová Eva
Abstract
The aim of present work is to assess the effects of bradykinin (Br) or noradrenaline (Nor) preconditioning to the levels of antioxidant enzymes: superoxide dismutase (SOD), copper, zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and catalase in ischemia/reperfusion (I/R) model in the rabbit spinal cord white matter as well as effect on glial fibrillary acidic protein (GFAP) and ubiquitin immunoreaction in glial cells. Rabbits were preconditioned by intraperitoneal single dose of Br or Nor 48 h prior to 20 min of ischemia followed by 24 or 48 h of reperfusion. White matter of L3-L6 spinal cord segments was used for comparison of antioxidant enzyme levels in sham control, ischemic groups and four preconditioned groups. The total SOD level in the Br or Nor preconditioned groups after 48 h of reperfusion was increased vs Br or Nor preconditioned groups after 24 h of reperfusion. The comparison among the ischemic group vs Br preconditioned (P<0.05), and Nor preconditioned (P<0.001) groups after 48 h of reperfusion, showed statistically significant decrease of Mn-SOD activity. Tissue catalase level activity was significantly decreased in the Br preconditioned group after 48 h of reperfusion (P<0.05) and Nor preconditioned groups after 24 h of reperfusion (P<0.001) and also after 48 h of reperfusion (P<0.001), in comparison to ischemic group after 48 h of reperfusion. Significantly decreased tissue catalase activity (P<0.05) in both Nor preconditioned groups after 24 or 48 h of reperfusion was measured vs Br preconditioned group after 48 h of reperfusion. According to our results, in the white matter, activation of stress proteins in glial cells, as well as antioxidant enzymes levels, were influenced by pharmacological preconditioning followed by 20 min of ischemia and 24 or 48 h of reperfusion. These changes contribute to ischemic tolerance acquisition and tissue protection from oxidative stress during reperfusion period.
Subject
Cell Biology,Histology,Biophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献