Relationship between lipid droplets size and integrated optical density

Author:

Boschi FedericoORCID,Rizzatti VanniORCID,Zoico ElenaORCID,Montanari TommasoORCID,Zamboni MauroORCID,Sbarbati Andrea,Colitti MonicaORCID

Abstract

Lipid accumulation is largely investigated due to its role in many human diseases. The attention is mainly focused on the lipid droplets (LDs), spherical cytoplasmic organelles, which are devoted to the storage of the lipids. The amount of lipid content is often evaluated by measuring LDs size and/or the integrated optical density (IOD) in cultured cells. Both evaluations are directly associated to the lipid content and therefore they are correlated to each other, but a lack of theoretical relationship between size and IOD was observed in literature. Here we investigated the size-IOD relationship of LDs observed in microscopical images of cultured cells. The experimental data were obtained from immature and differentiated 3T3-L1 murine cells, which have been extensively used in studies on adipogenesis. A simple model based on the spherical shape of the LDs and the Lambert-Beer law, which describes the light absorption by an optical thick material, leads to a mathematical relationship. Despite only light rays’ absorption was considered in the model, neglecting their scattering, a very good agreement between the theoretical curve and the experimental data was found. Moreover, a computational simulation corroborates the model indicating the validity of the mathematically theoretical relationship between size and IOD. The theoretical model could be used to calculate the absorption coefficient in the LDs population and it could be applied to seek for morphologically and functionally LDs subpopulations. The identification of LDs dynamic by measuring size and IOD could be related to different pathophysiological conditions and useful for understand cellular lipid-associated diseases.

Publisher

PAGEPress Publications

Subject

Cell Biology,Histology,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3