Risks associated with laser radiation reflections in a healthcare environment: a surface reflectance study in the range 250 nm – 25 μm

Author:

Insero GiacomoORCID,Mercatelli LucaORCID,Cimmino Cristina,Donato Roberto Gaetano,Romano GiovanniORCID,Fusi FrancoORCID,Guasti Andrea

Abstract

Biomedical applications relying on optical radiation, particularly with the advent of lasers, have experienced exponential growth in the last 20 years. Powerful optical sources are now found not only in universities, hospitals, and industries but also in beauty centers, used for tasks such as tattoo removal, and even in our homes. Despite their widespread use, managing the risks associated with lasers, particularly in non-research contexts, has not kept pace with their proliferation. While the risks associated with direct exposure to radiation to the eye and skin are relatively well understood, the hazards posed by reflected and diffuse radiation remain less characterized and monitored. Therefore, there is a critical need to assess potential eye and skin hazards in spaces where lasers and non-coherent light sources are used. This necessitates a detailed analysis of reflective surfaces, with particular emphasis on evaluating their reflectance characteristics at relevant wavelength ranges. This study investigates the reflectance and transmittance (where relevant) properties of commonly used materials in biomedical settings, including fabrics, plastics, and metals, across a broad spectrum from 250 nm (UVA) to visible light and into the infrared (IR) region up to 25 μm. Both specular (at 45° incidence) and diffuse reflectance spectra were measured using spectrophotometric techniques and used to provide a straightforward parameter to classify the specular/diffusive behavior of the different surfaces. Besides, small-angle reflectance measurements in the IR range were performed by Fourier transform infrared spectrometry. The knowledge of the material optical properties used in environments where optical radiation is employed allows for accurate assessment of associated risks. This facilitates the determination of appropriate preventive measures and the establishment of safer protocols, for both operators and, where applicable, patients and the general public. For this scope, the creation of a database of material reflective properties has been initiated.

Publisher

PAGEPress Publications

Reference13 articles.

1. Barat K. Laser Safety: Tools and Training. 2nd ed. London (UK): Taylor & Francis Ltd, 2017.

2. Directive 2006/25/EC of the European Parliament and of the Council of 5 April 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16

3. (1) of Directive 89/391/EEC). Non-binding guide to good practice for implementing Directive 2006/25/EC 'Artificial optical radiation. Publication Office of EU (2011) ISBN 978-92-79-16046-2 doi:10.2767/742018.

4. International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1,000 μm. Health Phys. 2013 Sep;105(3):271-295.

5. European Normative: EN 60601-2-22. Medical electrical equipment - Part 2-22: Particular requirements for basic safety and essential performance of surgical, cosmetic, therapeutic and diagnostic laser equipment.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3