Dissolved fluxes of nutrients and carbon at the sediment-water interface in the Adriatic Sea: review of early data and methods from the Italian National Research Council (CNR)

Author:

Spagnoli FedericoORCID,Ravaioli Mariangela

Abstract

We report the measurement of the Fluxes of Dissolved Compounds at the Sediment-Water Interface (DFSWIs), obtained by analyzing data collected in the Italian Exclusive Economic Zone (EEZ) of the Northern and Central Adriatic Sea from 1982. We also describe the methods, honed by Italy’s Consiglio Nazionale delle Ricerche (CNR), employed to measure and calculate DFSWIs, including benthic chambers and landers, sediment-water interface micro-profiling, on-board incubation, and pore water modeling. Data analysis demonstrated that in situ measurements are the most reliable approaches, but that on-board collected data also supply interesting results. The DFSWI data allowed to divide the Adriatic seafloor into areas with similar DFSWI types and intensities and to define the role of sediments as sources or sinks of chemicals such as nutrients, Dissolved Inorganic Carbon (DIC), and metals. DFSWIs mainly depend on dissolved and solid river inputs, Marine Organic Matter (mOM) production, and sediment reworking. They show a seasonal temperature-related trend, which in summer induces increased chemical reaction kinetics and microbial activity. DFSWIs decline from the Po River mouths southward, along the Holocene mud wedge. North of the Po River Delta, the DFSWIs are weaker and confined to the areas in front of the major river mouths, due to poor Organic Matter (OM) inputs and strong reworking of bottom sediments. The area south of the Po Delta cusp is characterized by strong DFSWIs, due to the high deposition of solid inputs from the Po River, strong primary production, and protection from the Western Adriatic Current and Bora storms; in summer, higher temperatures, and calm hydrodynamic conditions generate near-bottom hypoxic to anoxic environments in this area. In Northern and Central Adriatic offshore areas, negative DIC and phosphate fluxes are due to poorly reactive OM reaching this area and to the mainly carbonate composition and oxic environment of local bottom sediments. DFSWI data analysis highlighted the important contribution of sediments to marine carbon and nutrient cycles. This is particularly important for carbon, which plays a major role in seawater acidification and global climate change. The study also provides average DFSWI data for each diagenetic area, which allow calculating the carbon and nutrient budgets in the Adriatic Sea.

Publisher

PAGEPress Publications

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3