Abstract
A leaf-mounted sensor is described which detects condensing water vapour originating from leaf transpiration, taking advantage of a passive temperature gradient across the sunlit leaf and the underneath sensor plate, and simultaneously monitors incident solar radiation. The simple and low-cost device enables the qualitative assessment of plant water status by comparing the diurnal patterns of leaf transpiration and solar irradiance. A close correlation between condensation and irradiance occurs in conditions of unrestricted water supply, whereas a deviation of their course likely indicates a suboptimal plant water status.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering
Reference33 articles.
1. Afzal A., Duiker S.W., Watson J.E., Luthe D. 2017. Leaf thickness and electrical capacitance as measures of plant water status. Trans. ASABE 60:1063–74.
2. Allen R.G., Pereira L.S., Raes D., Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome.
3. Barbosa J.A., Freitas V.M.S., Vidotto L.H.B., Schleder G.R., De Oliveira R.A.G., Da Rocha J.F., Kubota L.T., Vieira L.C.S., Tolentino H.C.N., Neckel I.T., Gobbi A.L., Santhiago M., Lima R.S. 2022. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Appl. Mater. Inter.
4. Ben-Gal A., Ron Y., Yermiyahu U., Zipori I., Naoum S., Dag A. 2021. Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars. Agr. Water Manage. 245:106577.
5. Buckley T.N. 2019. How do stomata respond to water status? New Phytol. 224:21–36.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献