Monitoring mini-tomatoes growth: A non-destructive machine vision-based alternative

Author:

Ferreira Abreu Fernando,Antunes Rodrigues Luiz Henrique

Abstract

Yield is the most often used metric of crop performance, and it can be defined as the ratio between production, expressed as a function of mass or volume, and the cultivated area. Estimating fruit’s volume often relies on manual measurements, and the procedure precision can change from one person to another. Measuring fruits’ mass will also destroy the samples; consequently, the variation will be measured with different samples. Monitoring fruit’s growth is either based on destructive tests, limited by human labour, or too expensive to be scaled. In this work, we showed that the cluster visible area could be used to describe the growth of mini tomatoes in a greenhouse using image processing in a natural environment with a complex background. The proposed method is based on deep learning algorithms and allows continuous monitoring with no contact with the cluster. The images are collected and delivered from the greenhouse using low-cost equipment with minimal parameterisation. Our results demonstrate that the cluster visible area accumulation is highly correlated (R²=0.97) with growth described by a parameterised Gompertz curve, which is a well-known growth function. This work may also be a starting point for alternative growth monitoring methods based on image segmentation. The proposed U-Net architecture, the discussion about its architecture, and the challenges of the natural environment may be used for other tasks in the agricultural context.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3