Preliminary data on glyphosate, glufosinate, and metabolite contamination in Italian honey samples

Author:

Rampazzo Giulia,Zironi ElisaORCID,Depau GiacomoORCID,Pagliuca GiampieroORCID,Gazzotti TeresaORCID

Abstract

Glyphosate and glufosinate are among the most widely used pesticides in agriculture worldwide. Their extensive use leads to the presence of their residues on crops and in the surrounding environment. Beehives, bees, and apiculture products can represent potential sources for the accumulation of these substances and their metabolites, and the consequences for bee health, as well as the level of risk to human health from consuming contaminated food, are still unclear. Furthermore, information on the contamination levels of honey and other beehive products by these compounds remains poorly documented. This study is part of a broader research effort aimed at developing specific analytical methods for monitoring the level of these contaminants in bee products. The methodology employed enabled the acquisition of preliminary information concerning the levels of glyphosate and glufosinate contamination in honey samples obtained from various retailers in Italy to assess compliance with the limits established by Regulation 293/2013. The liquid chromatography tandem mass spectrometry analysis of the 30 honey samples revealed quantifiable levels of glyphosate in eight samples, with contamination ranging from 5.4 to 138.5 ng/g. Notably, one sample of the wildflower type showed residue levels nearly three times the maximum residue limit. Additionally, trace levels of glyphosate contamination were detected in another ten samples. It is noteworthy that glufosinate and its metabolites were not detected in any of the analyzed samples within the established method’s detection ranges.

Publisher

PAGEPress Publications

Reference23 articles.

1. Anastassiades M, Kolberg DI, Eichhorn E, Wachtler AK, Benkenstein A, Zechmann S, Mack D, Wildgrube C, Barth A, Sigalov I, Görlich S, Dörk D, Cerchia G, 2020. Quick method for the analysis of highly polar pesticides in food involving extraction with acidified methanol and LC- or IC-MS/MS measurement I. Food of plant origin (quppe-PO-Method). Available online: http://www.cromlab.es/Articulos/Metodos/EU/meth_quppe_PO_V11(1).pdf. Accessed on: 16/10/2023.

2. Battisti L, Potrich M, Sampaio A, de Castilhos Ghisi N, Costa-Maia FM, Abati R, dos Reis Martinez CB, Sofia SH, 2021. Is glyphosate toxic to bees? A meta-analytical review. Sci Total Environ 767:145397.

3. Benbrook CM, 2019. How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides? Environ Sci Eur 31:2.

4. Chiesa LM, Nobile M, Panseri S, Arioli F, 2019. Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry (IC-HRMS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36:592-600.

5. European Commission, 2013. Commission regulation (EU) No 293/2013 of 20 March 2013 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for emamectin benzoate, etofenprox, etoxazole, flutriafol, glyphosate, phosmet, pyraclostrobin, spinosad and spirotetramat in or on certain products. In: Official Journal, L 96/1, 5/04/2013.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3