Microbial contamination, antimicrobial resistance and biofilm formation of bacteria isolated from a high-throughput pig abattoir

Author:

Ghidini Sergio,De Luca SilvioORCID,Rodríguez-López PedroORCID,Simon Ancuţa Cezara,Liuzzo Gaetano,Poli Luca,Ianieri Adriana,Zanardi Emanuela

Abstract

The aim of this work was to assess the level of microbial contamination and resistance of bacteria isolated from a highthroughput heavy pig slaughterhouse (approx. 4600 pigs/day) towards antimicrobials considered as critical for human, veterinary or both chemotherapies. Samples, pre-operative and operative, were obtained in 4 different surveys. These comprised environmental sampling, i.e. air (ntotal = 192) and surfaces (ntotal = 32), in four different locations. Moreover, a total of 40 carcasses were sampled in two different moments of slaughtering following Reg. (CE) 2073/2005. Overall, 60 different colonies were randomly selected from VRBGA plates belonging to 20 species, 15 genera and 10 families being Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae the most represented ones. Thirty-seven isolates presented resistance to at least one molecule and seventeen were classified as multi-drug resistant. Enterobacteriaceae, particularly E. coli, displayed high MIC values towards trimethoprim, ampicillin, tetracycline and sulphametoxazole with MICmax of 16, 32, 32 and 512 mg/L, respectively. Moreover, isolated Pseudomonas spp. showed high MIC values in critical antibiotics such as ampicillin and azithromycin with MICmax of 32 and 64 mg/L, respectively. Additionally, in vitro biofilm formation assays demonstrated that fifteen of these isolates can be classified as strong biofilm formers. Results demonstrated that a high diversity of bacteria containing antibiotic resistant and multiresistant species is present in the sampled abattoir. Considering these findings, it could be hypothesised that the processing environment could be a potential diffusion determinant of antibiotic resistant bacteria through the food chain and operators.

Publisher

PAGEPress Publications

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3