Use of soil moisture active passive satellite data and WorldClim 2.0 data to predict the potential distribution of visceral leishmaniasis and its vector <em>Lutzomyia longipalpis</em> in Sao Paulo and Bahia states, Brazil
-
Published:2022-06-08
Issue:1
Volume:17
Page:
-
ISSN:1970-7096
-
Container-title:Geospatial Health
-
language:
-
Short-container-title:Geospat Health
Author:
Rodgers Moara de Santana Martins,Fonseca Elivelton,Nieto Prixia del Mar,Malone John B.,Luvall Jeffery C.,McCarroll Jennifer C.,Avery Ryan Harry,Bavia Maria Emilia,Guimaraes Raul,Wen Xue,Silva Marta Mariana Nascimento,Carneiro Deborah D.M.T.,Cardim Luciana Lobato
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease transmitted by Lutzomyia longipalpis, a sand fly widely distributed in Brazil. Despite efforts to strengthen national control programs reduction in incidence and geographical distribution of VL in Brazil has not yet been successful; VL is in fact expanding its range in newly urbanized areas. Ecological niche models (ENM) for use in surveillance and response systems may enable more effective operational VL control by mapping risk areas and elucidation of eco-epidemiologic risk factors. ENMs for VL and Lu. longipalpis were generated using monthly WorldClim 2.0 data (30-year climate normal, 1-km spatial resolution) and monthly soil moisture active passive (SMAP) satellite L4 soil moisture data. SMAP L4 Global 3-hourly 9-km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V004 were obtained for the first image of day 1 and day 15 (0:00-3:00 hour) of each month. ENM were developed using MaxEnt software to generate risk maps based on an algorithm for maximum entropy. The jack-knife procedure was used to identify the contribution of each variable to model performance. The three most meaningful components were used to generate ENM distribution maps by ArcGIS 10.6. Similar patterns of VL and vector distribution were observed using SMAP as compared to WorldClim 2.0 models based on temperature and precipitation data or water budget. Results indicate that direct Earth-observing satellite measurement of soil moisture by SMAP can be used in lieu of models calculated from classical temperature and precipitation climate station data to assess VL risk.
Publisher
PAGEPress Publications
Subject
Health Policy,Geography, Planning and Development,Health (social science),Medicine (miscellaneous)
Reference25 articles.
1. Anderson MC, Zolin CA, Sentelhas PC, Hain CR, Semmens K, Yilmaz MT, Gao F, Otkin JA, Tetrault R, 2016. The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impact. Rem Sens Environ 174:82-99. 2. Boser A, Sousa D, Larsen A, MacDonald A. 2021. Micro-climate to macro-risk: mapping fine scale differences in mosquito-borne disease risk using remote sensing. Environ Res Lett 16:124014. 3. Casanova C, Andrighetti MTM, Sampaio SMP, Marcoris MLG, Colla-Jacques FE. 2013. Larval breeding sites of Lutzomyia longipalpis (Diptera:Psychodidae) in visceral leishmaniasis endemic urban areas in southeastern Brazil. PLoS Negl Trop Dis 7:e2443. 4. Cardim MFM, Rodas LC, Dibo MR, Guirado MM, Oliveira AM, Chiaravalloti-Neto F, 2013. Introduction and expansion of human American visceral leishmaniasis in the state of Sao Paulo, Brazil, 1999-2011. Rev Saude Publica 47:691-700. 5. Colliander A, Jackson TJ, Bindlish R, Chan N, Kim SB, Cosh RB, Dunbar RS, Dang L, Pashaian I, Asanuma J, Aida K, Berg A, Rowlandson T, Bosch D, Caldwell T, Caylor K, Goodrich D, Jassar H, Lopez-Baeza E, Martínez-Fernández J, González-Zamora A, Livingston S, McNairn J, Pacheco A, Moghaddam M, Montzka C, Notarnicola C, Niedris G, Pellarin T, Prueger J, Pulliainen J, Rautiainen K, Ramos J, Seyfried M, Starks P, Su Z, Zeng Y, van der 7 Velde R, Thibeault M, Dorigo W, Vreugdenhil M, Walker JP, Wu X, Monerris A, O’Neill PE, Entekhabi D, Njoku EG, Yueh S, 2017. Validation of SMAP surface soil moisture products with core validation sites. Rem Sens Environ 191:215-31.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|