Abstract
The first case of COVID-19 in continental Portugal was documented on the 2nd of March 2020 and about seven months later more than 75 thousand infections had been reported. Although several factors correlate significantly with the spatial incidence of COVID-19 worldwide, the drivers of spatial incidence of this virus remain poorly known and need further exploration. In this study, we analyse the spatiotemporal patterns of COVID-19 incidence in the at the municipality level and test for significant relationships between these patterns and environmental, socioeconomic, demographic and human mobility factors to identify the mains drivers of COVID-19 incidence across time and space. We used a generalized liner mixed model, which accounts for zero inflated cases and spatial autocorrelation to identify significant relationships between the spatiotemporal incidence and the considered set of driving factors. Some of these relationships were particularly consistent across time, including the ‘percentage of employment in services’; ‘average time of commuting using individual transportation’; ‘percentage of employment in the agricultural sector’; and ‘average family size’. Comparing the preventive measures in Portugal (e.g., restrictions on mobility and crowd around) with the model results clearly show that COVID-19 incidence fluctuates as those measures are imposed or relieved. This shows that our model can be a useful tool to help decision-makers in defining prevention and/or mitigation policies.
Subject
Health Policy,Geography, Planning and Development,Health (social science),Medicine (miscellaneous)
Reference76 articles.
1. Ahmed F, Zviedrite N, Uzicanin A, 2018. Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review. BMC Public Health 18:518.
2. Akaike H, 1974. A new look at the statistical model identification. IEEE Trans Automat Contr 19:716-23.
3. Arashi M, Bekker A, Salehi M, Millard S, Erasmus B, Cronje T, Golpaygani M, 2020. Spatial analysis and prediction of COVID-19 spread in South Africa after lockdown. arXiv [preprint].
4. Azevedo L, Pereira MJ, Ribeiro MC, Soares A, 2020. Geostatistical COVID-19 infection risk maps for Portugal. Int J Health Geogr 19:25.
5. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, Wang M, 2020. Presumed asymptomatic carrier transmission of COVID-19. JAMA 323:1406-7.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献