Non-invasive imaging demonstrates clinical features of ankylosing spondylitis in a rat adjuvant model: a case study

Author:

Accart N.,Dawson J.,Kolbinger F.,Kramer I.,Beckmann N.

Abstract

Ankylosing spondylitis is a common rheumatic disease involving both inflammatory erosive osteopenia and bony overgrowth. Main disease features are recapitulated in small rodents challenged with complete Freund’s adjuvant. MRI was used to follow longitudinally in vivo changes induced in the rat spine and micro-CT as terminal assessment of bone damage. Histochemistry methods were used to validate these imaging modalities in view of preclinical drug testing and translational applications of spine imaging. Animals were examined using a 3D fat-suppressed gradient-echo sequence, following the injection of gadolinium. At the end of the study, spines were excised for micro-CT and histological examination. Signals reflecting inflammation were detected at levels L5-L6 of the lumbar spine throughout the experimental period, peaking at day 27 after adjuvant. At day 14 the inflammatory response occurred along ligaments but it expanded to nearby soft tissues at later time points. From day 27 onwards inflammation was also detected within the bone, in areas where erosion occurred, and bone-like structures were formed. Micro-CT showed bone remodeling. Histology of isolated spines confirmed the inflammation and bone remodeling observed in vivo. The present study including three complementary approaches clearly demonstrates the potential of imaging for longitudinal assessments of changes in the spine in this animal model in view of preclinical pharmacological studies. The excellent correlation seen between the in vivo images and the histology underlines its fundamental role in the validation of non-invasive imaging readouts.

Publisher

PAGEPress Publications

Subject

Cell Biology,Histology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is there still room for novelty, in histochemical papers?;European Journal of Histochemistry;2016-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3