Chemoinformatics approach to design and develop vanillin analogs as COX-1 inhibitor

Author:

Norhayati Norhayati,Ekowati Juni,Diyah Nuzul Wahyuning,Tejo Bimo Ario,Ahmed Samar

Abstract

Background: Coronary Heart Disease (CHD), commonly known as the silent killer, impacted the severity of COVID-19 patients during the pandemic era. Thrombosis or blood clots create the buildup of plaque on the coronary artery walls of the heart, which leads to coronary heart disease. Cyclooxygenase 1 (COX-1) is involved in the production of prostacyclin by systemic arteries; hence, inhibiting the COX-1 enzyme can prevent platelet reactivity mediated by prostacyclin. To obtain good health and well-being, the research of discovery of new drugs for anti-thrombotic still continue. Objective: This study aims to predict the potential of 17 compounds owned by the vanillin analog to COX-1 receptor using in silico. Methods: This research employed a molecular docking analysis using Toshiba hardware and AutoDock Tools version 1.5.7, ChemDraw Professional 16.0, Discovery Studio, UCSF Chimera software, SWISSADME and pKCSM, a native ligand from COX- 1 (PDB ID: 1CQE) was validated. Results: The validation result indicated that the RMSD was <2 Å. The 4-formyl-2-methoxyphenyl benzoate compound had the lowest binding energy in COX-1 inhibition with a value of -7.70 Å. All vanillin derivatives show good intestinal absorption, and the predicted toxicity indicated that they were non-hepatotoxic. All these compounds have the potential to be effective antithrombotic treatments when consumed orally. Conclusion: In comparison to other vanillin derivative compounds, 4-formyl-2-methoxyphenyl benzoate has the lowest binding energy value; hence, this analog can continue to be synthesized and its potential as an antithrombotic agent might be confirmed by in vivo studies.

Publisher

PAGEPress Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3