Unraveling the diversity and spatial distribution of Soil-borne Fungal Mycobiomes with response to environmental parameters, cropping schemes and cropping seasons

Author:

Arif Muhammad1ORCID

Affiliation:

1. SAKARYA UNIVERSITY OF APPLIED SCIENCES

Abstract

The arid zones are vital agricultural areas, yet they encounter substantial obstacles due to destructive plant diseases caused by soil-borne fungal pathogens. Gaining knowledge about the structure and behavior of the fungus community in the soil and its connection to these ailments is crucial for developing efficient ways to manage the diseases. This study aimed to examine the fungal communities found in soil in areas with high temperatures and multiple cropping schemes. The main objectives of this study were to provide insight into the relationship between these fungal communities, environmental circumstances, and the occurrence of severe plant diseases. Soil samples were collected from agricultural fields exhibiting disease outbreaks, and the fungus diversity was analyzed using modern techniques. The results of this study revealed a diverse array of soil-dwelling fungi, encompassing both beneficial and detrimental species. The presence of pathogenic fungi, specifically basidiomycetes and ascomycetes, in soils where disease outbreaks occur frequently suggests that they play a substantial role in the development of these diseases. Temperature, moisture, and soil conditions also affected fungal community structure and disease dynamics. These findings highlight the importance of soil-borne fungus mycobiome in forecasting and managing plant diseases. To reduce severe plant diseases and preserve agricultural sustainability in these areas, integrated disease management must include the complex interactions between soil fungus, plant hosts, and environmental conditions. To understand fungal pathophysiology and develop targeted disease preventive and control measures, a comprehensive study is required.

Publisher

Sakarya University of Applied Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3