On problems of Topological Dynamics in non-autonomous discrete systems
Author:
Affiliation:
1. Departamento de Matemáticas, Campus de Espinardo , Universidad de Murcia , 30100 , Murcia , SPAIN
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science
Link
https://www.sciendo.com/pdf/10.21042/AMNS.2016.2.00034
Reference55 articles.
1. R.L. Adler, A.G. Konheim and M.H. McAndrew, (1965), Topological entropy, Transactions of the American Mathematical Society, 114, No 2, 309-319. 10.2307/1994177
2. L. Alsedà, J. Llibre and M.Misiurewicz, (2000), Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publishing Co., River Edge.
3. J.F. Alves, (2009), What we need to find out the periods of a periodic difference equation, Journal of Difference Equations and Applications, 15, No 8-9, 833-847. 10.1080/10236190802357701
4. Z. AlSharawi, J. Angelos, S. Elaydi and L. Rakesh, (2006), An extension of Sharkovsky’s theorem to periodic difference equations, Journal of Mathematical Analysis and Applications, 316, No 1, 128-141. 10.1016/j.jmaa.2005.04.059
5. R. Azizi, Nonautonomous Riccati difference equation with real k–periodic (k ≥ 1) coefficients, submitted to Journal of Difference Equations and Applications.
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parametric topological entropy of families of multivalued maps in topological spaces and induced hyperspace maps;Communications in Nonlinear Science and Numerical Simulation;2023-10
2. When Does Chaos Appear While Driving? Learning Dynamical Systems Via Car-Following Models;Mathematics Magazine;2022-08-01
3. Topological entropy of continuous self-maps on closed surfaces;Journal of Difference Equations and Applications;2020-01-07
4. Hereditarily non uniformly perfect non-autonomous Julia sets;Discrete & Continuous Dynamical Systems;2020
5. Alternative approaches of evaluating the 0–1 test for chaos;International Journal of Computer Mathematics;2019-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3