Smoothing vs. sharpening of colour images: Together or separated

Author:

Pérez-Benito Cristina1,Morillas Samuel2,Jordán Cristina3,Conejero J. Alberto2

Affiliation:

1. Instituto de Biomecánica de Valencia , Universitat Politècnica de València , València , Spain

2. Instituto Universitario de Matemática Pura y Aplicada , Universitat Politècnica de València , València , Spain

3. Instituto Universitario de Matemática Multidisciplinar , Universitat Politècnica de València , València , Spain

Abstract

Abstract It is still a challenge to improve the efficiency and effectiveness of image denoising and enhancement methods. There exists denoising and enhancement methods that are able to improve visual quality of images. This is usually obtained by removing noise while sharpening details and improving edges contrast. Smoothing refers to the case of denoising when noise follows a Gaussian distribution. Both operations, smoothing noise and sharpening, have an opposite nature. Therefore, there are few approaches that simultaneously respond to both goals. We will review these methods and we will also provide a detailed study of the state-of-the-art methods that attack both problems in colour images, separately.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Region-Adaptive Video Sharpening Via Rate-Perception Optimization;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Analysis of Deep Learning Performance for Diabetic Retinopathy Severity Classification;Lecture Notes in Mechanical Engineering;2024

3. Humanoid robot control system utilizing cost-oriented automation (COA) and edge detection;E3S Web of Conferences;2024

4. Spatial enhancement of Landsat-9 land surface temperature imagery by Fourier transformation-based panchromatic fusion;International Journal of Image and Data Fusion;2023-12-19

5. A Method of Fuzzy Enhancement for Degraded Image Based on Deep Learning;IETE Journal of Research;2022-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3