Heating appliance used to study vibration strength of the structures at a temperature near 1300 °C

Author:

Lupsha V. A.1,Muraviev N. D.1,Bairak V. V.1,Marchenko M. I.1,Doronin A. N.1

Affiliation:

1. Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics

Abstract

Studying the vibration strength of various structures, parts and load-bearing elements used in aviation engineering, oil-and-gas and metallurgical industry at elevated temperatures suggests using of special heating appliances. We present the heating appliance developed to study the vibration strength of the structures used as part of vibration stands capable of sustaining the temperature mode close to 1300°C during long periods of time. A framed structure of the heating appliance is presented, having neither bottom, side or end walls nor cover, all of them substituted with a roll heat-retaining material. The frame design of the heating appliance provides for rather quick manufacture of a frame of the desired dimensions. The use of heat-retaining material makes it possible to remove temperature sensors from the heating appliance, as well as pipelines for conducting gas-dynamic studies. The analysis of frequently used heat-resistant alloys (superalloys) is carried out. A wire made of Kh23Yu5T-N alloy was used as a material for heating elements to maintain the desired temperature conditions. The design, shape, mode of fixing the heating elements in the heating device, as well as the method of connection to the power supply and measuring systems are proposed. The results of experimental study are presented to confirm the long-term operability of the appliance with heating elements made of the wire 6 and 7 mm in diameter at a temperature up to 1300°C. The results obtained revealed the necessity of replacing the heating elements after each long-term high-temperature exposure. The proposed designs and material of the heating elements provide the possibility of their rapid manufacture and replacement. It should be noted that all the components of the heating device are economically efficient. The developed heating appliance was used in studying the strength of various structures under the effect of vibration and gas-dynamic loads at temperatures close to 1300°C.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3