Gigacycle fatigue of the turbocharger gear wheel

Author:

Botvina L. R.1,Tyutin M. R.1,Alexandrov A. R.2

Affiliation:

1. Russian Academy of Sciences

2. GasSurf Engineering Company

Abstract

   The goal of the study is to elucidate the reasons for early fracture of the gear wheel teeth of a Cameron TA9000 turbocharger (1820 kW) after an operational load up to 1. 3 x 109 cycles.   The chemical composi­tion and the microstracture of the tooth metal were studied using the methods of metallography, microhardness and optical microscopy. The microrelief of fracture surfaces of operational fractures was studied using electron scanning microscopy. Analysis of chemical composition proved the steel grade of the tooth metal (DIN 31CrMoV9) declared by the manufacturer. Visual analysis of the fragments under study re­vealed numerous cracks present on the tooth contact surfaces. The fatigue fracture origins detected on the fracture surfaces are typical of high cycle and gigacycle fatigue fracture. In the latter case, the detected fracture looks like a "fish eye" exhibiting an area of?? structural heterogeneity with inclusions and pores in the center. The fracture probably developed from the first tooth fragment to the fifth one being accom­ panied by an increase in the number of fatigue fracture origins known to be attributed to an increase in the stress amplitude. Metallographic study showed the presence of a subsurface hardened layer with a thickness of 120 - 200 pm with a defect-containing structure associated with grain-boundary precipitates (presumably, carbides (Fe, Cr)3C), which can result from violation of the modes of heat treatment of the gear wheel. Formation of brittle intergranular cracks on the contact surface and their subsequent develop­ment in the entire depth of the subsurface hardened layer appeared to be the reason for a decrease in the strength and bearing capacity of the gear teeth.

Publisher

TEST-ZL Publishing

Subject

Applied Mathematics,Mechanics of Materials,General Materials Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3