Diagnostics of semiconductor structures by electrochemical capacitance-voltage profiling technique

Author:

Yakovlev G. E.1,Frolov D. S.1,Zubkov V. I.1

Affiliation:

1. St. Petersburg State Electrotechnical University «LÉTI»

Abstract

The properties of interfaces in the heterostructures which frequently govern their operation are of particular importance for the devices containing heterostructures as active elements. Any further improving of the characteristics of semiconductor devices is impossible without a detail analysis of the processes occurring at the interfaces of heterojunctions. At the same time, the results largely depend on the purity of the starting materials and the technology of layer manufacturing. Moreover, the requirements to the composition and distribution of the impurity steadily get stringent. Therefore, the requirements regarding the methods of the impurity control and carrier distribution also become tougher both in the stage of laboratory development of the structure and in various stages of manufacturing of semiconductor devices. Electrochemical capacitance-voltage profiling is distinguished among the methods of electrical diagnostics of semiconductors by the absence of special preparation of the structures and deposition of the contacts to perform measurements, thus providing for gaining information not only about the impurity distribution but also about the distribution of free carriers. The goal of this work is to perform precise measurements of the profiles of free carrier distribution in semiconductor structures of different types, and demonstrate the measuring capabilities of a modern technique for concentration distribution diagnostics, i.e., electrochemical capacitance-voltage profiling. The method allows verification of the layer thickness in semiconductor heterostructures and provide a useful and informative feedback to technologists. To increase the resolution of the method and broad up the range of available test frequencies, a standard electrochemical profiler has been modified. Mapping data for GaAs substrate structure, the profiles of the concentration distribution of the majority charge carriers in SiC structures, GaAs structure with a pn junction, pHEMT heterostructure, GaN heterostructure with multiple quantum wells, and in a silicon-based solar cell heterostructure are presented. The obtained results can be used to analyze the physical properties and phenomena in semiconductor devices with quantum-sized layers, as well as to improve and refine the parameters of existing electronic devices.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precision assessment of carrier concentration in semiconductors with negative electron affinity;Journal of Materials Science: Materials in Electronics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3