Validation of the expert methodology «Detection of condensed traces of the gunshot residue containing heavy metal compounds on various objects by scanning electron microscopy and X-ray microanalysis»

Author:

Smirnova S. A.1,Afanasyev I. B.2,Bebeshko G. I.2,Omel’yanyuk G. G.3

Affiliation:

1. Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation; RUDN University

2. Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation

3. Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation; RUDN University; N. É. Bauman Moscow State Technical University (BMSTU)

Abstract

We present and discuss the results of the validation of a forensic qualitative testing technique which consists in the detection of condensed traces of the gunshot residue (GSR) in the form of individual microparticles on the objects under study and their identification by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) using a scanning electron microscope Mira III (Tescan, Czech Republic) equipped with a system of X-ray microanalysis INCA GSR 450 (Oxford Nanoanalysis, Great Britain). The procedure for detecting GSR particles containing heavy metal compounds, systems of their classification and interpretation of test results are described. The suitability of the methodology for solving forensic problems has been confirmed. The validation procedure consists in assessing the reliability by comparing the test results obtained by experts (A and B) in two laboratories at different times using the same device, and in confirming the competence of experts proceeding from the results of blind tests. A standard sample ENFSI GSR PT 2018 A-03-07 is used. Each of the experts determined the number of particles classified as GSR present in control samples taken in a ballistic laboratory during a full-scale experiment: from the hands of the shooter; from the hands of a person who did not shoot; without microparticles (clean stage of an electron microscope). The reliability of the technique is characterized by the index (probability) of correct results of detecting GSR particles in the standard sample of at least 95.8% and by a small proportion of false results (no more than 5.4%). The competence of the experts is proved by the consistent results of «blind» testing of control full-scale samples, containing and not containing GSR particles obtained in different laboratories. The results of the validation indicate the suitability of the method for obtaining reliable and valid information about the presence of GSR particles on the objects under study.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3