The scale factor effect on Young’s modulus of steel specimens determined by tensile tests

Author:

Matyunin V. M.1,Marchenkov A. Yu.1,Goryachkina M. V.1,Poroykov A. Yu.1,Zhgut D. A.1,Karimbekov M. A.1,Pankina A. A.1

Affiliation:

1. National research university «Moscow Power Engineering Institute»

Abstract

The modulus elasticity (or Young’s modulus) is considered to be a rather stable physical and mechanical characteristic of metallic materials being a weak function of the chemical composition and structure. However, the temperature and anisotropy can be referred as the main factors affecting the Young modulus. Scanty data on the scale factor effect on Young’s modulus are sometime even contradictory. We present the results of studying the impact of the scale factor on Young’s modulus of steel 45 determined by the tension of cylindrical tensile specimens with different initial diameters on an Instron 8801 machine with a movable traverse speed of 0.1 mm/min at room temperature. An extensometer and a digital image correlation (DIC) method were used to measure elastic deformations. Both methods showed fairly close results during tensile testing of specimens with equal diameters. DIC method made it possible to measure elastic deformations on small-size specimens on which it was impossible to fix the extensometer. A decrease in the Young modulus with an increase in the specimen diameter has been revealed. Graphical dependences of the Young modulus on the specimen diameter and cross-sectional area have been obtained. Possible reasons for the decrease in the Young modulus under the influence of the scale factor have been indicated. A decrease in the specific surface area and specific surface energy, an increase in the deformable volume, and a decrease in the strain rate at a constant movable traverse speed are among the main reasons. The decrease in Young’s modulus under the influence of the scale factor must be taken into account in strength calculations and in assessing the residual life of large-scale parts and structures with relatively large cross sections and wall thicknesses.

Publisher

TEST-ZL Publishing

Subject

Applied Mathematics,Mechanics of Materials,General Materials Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3