Study of the electrophysical and magnetic properties of a Dirac 3D semimetal Cd3As2 with nanogranules of MnAs

Author:

Saypulaeva L. A.1,Melnikova N. V.2,Gadzhialiev M. M.1,Tebenkov A. V.2,Babushkin A. N.2,Zakhvalinskii V. S.3,Al-Onaizan M. H.3,Ril A. I.4

Affiliation:

1. Institute of Physics, DFRC RAS

2. Ural Federal University, Institute of Natural Sciences and Mathematics

3. National University of Science and Technology «MISIS»

4. Institute of General and Inorganic Chemistry, RAS

Abstract

We report on the main results of studying the electrical and magnetoresistance (MR) of a composite material consisting of 70 % mol. Dirac semi-metal Cd3As2 and 30 % mol. ferromagnet MnAs at pressures up to 50 GPa in a diamond anvil cell with a «rounded cone-flat» type anvils, as well as magnetization at hydrostatic pressures up to 6 GPa in a toroid-shaped high-pressure cell, both at room temperature and in the temperature range of 180 – 350 K at atmospheric pressure. A mixture of methanol and ethanol in a ratio of 4:1 was used as a pressure transmitting medium. Elemental analysis of Cd3As2 + 30 % mol MnAs composites showed that much of the volume is occupied by the Cd3As2 phase. The proportion of MnAs phase inclusions is less than 5 %. The feature of Cd3As2 + MnAs is the presence of a significant region of non-mixing of the Cd3As2 and MnAs phase melts. A negative MR was revealed with increasing pressure in the entire studied baric zone. The maximum negative MR is observed in the baric zone of 22 – 26 GPa. Further increase in the pressure up to the maximum level result in the appearance of several extrema on the ΔR/R0(P) curve, with negative MR not exceeding 4 %. Upon pressure release from 50 GPa, the baric dependence of ΔR/R0(P) is characterized by an inversion of the MR sign: at pressures around 40 GPa, a negative MR is replaced by a positive MR, and at around 20 GPa, the maximum value of positive MR of ~5.3 % is observed. Signs of the instability of the monoclinic structure of Cd3As2 resulted from its partial decomposition upon decompression were revealed. The results obtained can be used in spintronics when using appropriate composite materials.

Publisher

TEST-ZL Publishing

Subject

Applied Mathematics,Mechanics of Materials,General Materials Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3