Study of the wear resistance of composite coatings modified with h-BN particles on AZ31 magnesium alloy

Author:

Zhaludkevich A. L.1,Karpushenkov S. A.2,Karpushenkava L. S.2,Konovalova A. V.1,Ignatenko O. V.1,Shoukavaya T. V.1

Affiliation:

1. Scientific and Practical Material Research Center, National Academy of Sciences of Belarus

2. Scientific and Practical Material Research Center, National Academy of Sciences of Belarus; Belarusian State University

Abstract

A low wear resistance is a significant disadvantage of magnesium-based alloys widely used in industry. The results of plasma electrolytic oxidation (PEO) carried out in an aqueous-alkaline phosphate electrolyte with the addition of hexagonal boron nitride (h-BN) powder to obtain coatings with greater wear resistance on the surface of AZ31 magnesium alloy are presented. The PEO method is one of the most promising for surface treatment of magnesium alloys, since oxidation is carried out in alkaline aluminate, silicate or phosphate electrolytes with various functional additives. The addition of nanocrystalline hexagonal h-BN powder in the form of a suspension into the electrolyte volume does not affect the electrical parameters of PEO, and h-BN particles are incorporated into the structure of the formed composite coating, increasing the wear resistance. It is shown that the resulting coatings have a relief typical of PEO with developed morphology and porosity, which change depending on the oxidation time. In this case, the incorporation of h-BN particles into the coating occurs by an inert mechanism, since they do not undergo chemical transformations with the formation of new phases. Composite coatings obtained on the surface of the AZ31 magnesium alloy by the PEO method consist of crystalline phases of MgO and Mg3(PO4)2, regardless of the addition of h-BN particles to the electrolyte. The wear resistance of coatings is 6 – 8 times higher compared to the untreated alloy. The results obtained can be used to produce PEO coatings with increased wear resistance and use them in various sectors of the economy.

Publisher

TEST-ZL Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3