Study of the effect of static stresses on the hydrogen content and electrochemical characteristics of steels of different types

Author:

Rakovskaya E. G.1,Zanko N. G.1,Yagunova L. K.2

Affiliation:

1. S. M. Kirov St. Petersburg State Forest Technical University

2. Immanuel Kant Baltic Federal University

Abstract

When cathodic protection is applied in places where paint films are damaged, an intense release of hydrogen occurs, which is removed both through diffusion and by transition from the adsorbed state on the metal surface to the subsurface layers thus leading to static hydrogen fatigue of steels, i.e., a brittle fracture occurs suddenly under static loading conditions at stress values significantly lower than the strength limit and even below the plasticity limit. We present the results of studying the impact of static tensile stresses on the hydrogen absorption by a metal during its cathodic polarization and the distribution of hydrogen over the cross-section of the metal surface. Three types of metal samples were used: wire samples made of U8A steel, plate samples made of 10KhSND steel, and semicircular samples made of Kh18N9T stainless steel with a stress concentrator. Tests of wire and semi-ring samples were carried out under a constant load and plate samples were tested under constant deformation. Polarization of wire and plate samples was carried out at different current densities for 4 days and semi-ring samples for 1 hour. At the end of polarization, the layer-by-layer distribution of hydrogen absorbed by the metal was determined by the anodic dissolution method. It is shown that with increasing deformation, the hydrogen content of the surface layers of the metal increases. Moreover, application of tensile loads and deformation of the metal by bending contribute to an increase in the amount of absorbed hydrogen and affect hydrogen distribution over the metal cross section. The thickness of the layer containing the maximum amount of hydrogen differs in steels of different compositions and structures. The results obtained can be used to protect structural steels against corrosion in sea water.

Publisher

TEST-ZL Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3