Quantitative texture analysis of a hydroxyapatite coatings plasma-sprayed on titanium substrates at different temperatures

Author:

Shamray V. F.1,Serebryany V. N.1,Kolyanova A. S.1,Kalita V. I.2,Komlev V. S.,Barinov S. M.1,Komlev D. I.1,Barybin M. V.

Affiliation:

1. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

2. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Science

Abstract

Artificial hydroxyapatite exhibits an excellent biocompatibility with tissues of human body. However, poor mechanical properties of hydroxyapatites and low reliability in wet environments restrict their use. These limitations can be overcome by applying the hydroxyapatite as a coating onto metallic implants. X-ray diffraction analysis (restoration of orientation distribution function from pole figures and the Rietveld method) and scanning electron microscopy have been used to study thick (~330 μm) plasma-sprayed hydroxyapatite coatings. The coatings were deposited onto Ti – 2Al – 1Mn alloy substrates, one of which was held at room temperature (20°C) whereas the other substrate was preheated to 550°C. The texture of the coating deposited on substrate held at room temperature is characterized by the (001)[510] orientation, the volume fraction of which is 0.08, while the coating deposited on preheated substrate has the (001)[410] orientation, the volume fraction of which is 0.10. Results of texture analysis are qualitatively supported by the Rietveld refinement data. The problem of the formation of basal texture in plasma-sprayed hydroxyapatite coatings is discussed in terms of quantitative texture analysis in relation to the differences in the substrate temperature and spraying parameters. It was concluded that the quantitative texture analysis is of importance for deeper understanding the effect of spraying parameters on the formation of hydroxyapatite coatings.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative Texture Study of the Tooth Enamel;Crystallography Reports;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3