Author:
Nisa Sayyidan,Irwan Irwan,Syata Ilham
Abstract
This research was conducted based on the increasing rate of spread of dengue hemorrhagic fever in the city of Makassar. The aim of this research is to obtain a model for the spread of dengue hemorrhagic fever and find out the numerical solution of the mathematical model. The method used in this research is a quantitative method. The data is processed in the form of quantitative data in the form of the number of people infected, dead and recovered from dengue fever in the city of Makassar in 2021. This research is to predict future dengue hemorrhagic fever cases using the Runge-Kutta Order 4 method. The mathematical model for dengue hemorrhagic fever is in the form of a system of differential equations that includes the variables Sh (Susceptible Host), Ih(Infected Host), Rh (Recovered Host), Sv (Susceptible Vector), dan Iv (Infected Vector). Then look for the parameters that will be used. The research results obtained in january 2022 with Dt = 0,01 using the Fourth Order Runge-Kutta Method with initial values of Sh0= 1426454, Ih0 = 583, Rh0 = 582, Sv0 = 13165, Iv0 = 1215 is Sh100 = 1420142, Ih100 = 2949, Rh100 = 4529, Sv100 = 13706, Iv100 = 751.
Reference11 articles.
1. Akbar, H., & Syaputra, E.M. (2019). The Risk Factors of Dengue Hemorrhagic Fever in Indramayu Regency. The Indonesian Jurnal of Health Promotion, 2(3). https://jurnal.unismuhpalu.ac.id/index.php/MPPKI/article/view/626
2. Effendy. (2013). Analisis Stabilitas Penyebaran Penyakit DBD di Kabupaten Jember dengan Metode Model SIR Stokastik. Jember: Universitas Jember. https://repository.unej.ac.id/bitstream/handle/123456789/6269/Effendy%20-%20091810101035.pdf?sequence=1&isAllowed=y
3. Handayani, Ika dan Mudyawati Kamaruddin. (2021). Pemetaan Kasus DBD dan Faktor Iklim di Kota Makassar. Jurnal Penelitian Kedokteran dan Kesehatan, 3(3). https://jurnal.fkunisa.ac.id/index.php/MA/article/view/83
4. Hurit, R. U., & Resi, B. B. F. (2022). Penyelesaian Model SIR untuk Penyebaran Penyakit HIV/AIDS Menggunakan Metode Euler dan Metode Heun. Seminar Nasional Pendidikan Matematika, 3(01). https://proceeding.unikal.ac.id/index.php/sandika/article/view/900
5. Hurit, R. U., & Sudi Mungkasi. (2021). The Euler, Heun, and Fourth Order Runge-Kutta Solutions to SEIR Model for the Spread of Meningitis Disease. Mathline: Jurnal Matematika dan Pendidikan Matematika, 6(2), 140-153. https://mathline.unwir.ac.id/index.php/Mathline/article/view/176