Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study

Author:

Bey Anissa1,Ma Jiasen1,Furutani Keith M.2,Herman Michael G.1,Johnson Jedediah E.1,Foote Robert L.1,Beltran Chris J.2

Affiliation:

1. Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA

2. Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA

Abstract

Abstract Purpose This article presents an in vivo imaging technique based on nuclear fragmentation of carbon ions in irradiated tissues for potential real-time monitoring of carbon-ion radiation therapy (CIRT) treatment delivery and quality assurance purposes in clinical settings. Materials and Methods A proof-of-concept imaging and monitoring system (IMS) was devised to implement the technique. Monte Carlo simulations were performed for a prospective pencil-beam scanning CIRT nozzle. The development IMS benchmark considered a 5×5-cm2 pixelated charged-particle detector stack positioned downstream from a target phantom and list-mode data acquisition. The abundance and production origins, that is, vertices, of the detected fragments were studied. Fragment trajectories were approximated by straight lines and a beam back-projection algorithm was built to reconstruct the vertices. The spatial distribution of the vertices was then used to determine plan relevant markers. Results The IMS technique was applied for a simulated CIRT case, a primary brain tumor. Four treatment plan monitoring markers were conclusively recovered: a depth dose distribution correlated profile, ion beam range, treatment target boundaries, and the beam spot position. Promising millimeter-scale (3-mm, ≤10% uncertainty) beam range and submillimeter (≤0.6-mm precision for shifts <3 cm) beam spot position verification accuracies were obtained for typical therapeutic energies between 150 and 290 MeV/u. Conclusions This work demonstrated a viable online monitoring technique for CIRT treatment delivery. The method's strong advantage is that it requires few signal inputs (position and timing), which can be simultaneously acquired with readily available technology. Future investigations will probe the technique's applicability to motion-sensitive organ sites and patient tissue heterogeneities. In-beam measurements with candidate detector-acquisition systems are ultimately essential to validate the IMS benchmark performance and subsequent deployment in the clinic.

Publisher

International Journal of Particle Therapy

Subject

Radiology, Nuclear Medicine and imaging,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3