Learning-Based Stopping Power Mapping on Dual-Energy CT for Proton Radiation Therapy

Author:

Wang Tonghe1,Lei Yang1,Harms Joseph1,Ghavidel Beth1,Lin Liyong1,Beitler Jonathan J.1,McDonald Mark1,Curran Walter J.1,Liu Tian1,Zhou Jun1,Yang Xiaofeng1

Affiliation:

1. Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA

Abstract

Abstract Purpose Dual-energy computed tomography (DECT) has been used to derive relative stopping power (RSP) maps by obtaining the energy dependence of photon interactions. The DECT-derived RSP maps could potentially be compromised by image noise levels and the severity of artifacts when using physics-based mapping techniques. This work presents a noise-robust learning-based method to predict RSP maps from DECT for proton radiation therapy. Materials and Methods The proposed method uses a residual attention cycle-consistent generative adversarial network to bring DECT-to-RSP mapping close to a 1-to-1 mapping by introducing an inverse RSP-to-DECT mapping. To evaluate the proposed method, we retrospectively investigated 20 head-and-neck cancer patients with DECT scans in proton radiation therapy simulation. Ground truth RSP values were assigned by calculation based on chemical compositions and acted as learning targets in the training process for DECT datasets; they were evaluated against results from the proposed method using a leave-one-out cross-validation strategy. Results The predicted RSP maps showed an average normalized mean square error of 2.83% across the whole body volume and an average mean error less than 3% in all volumes of interest. With additional simulated noise added in DECT datasets, the proposed method still maintained a comparable performance, while the physics-based stoichiometric method suffered degraded inaccuracy from increased noise level. The average differences from ground truth in dose volume histogram metrics for clinical target volumes were less than 0.2 Gy for D95% and Dmax with no statistical significance. Maximum difference in dose volume histogram metrics of organs at risk was around 1 Gy on average. Conclusion These results strongly indicate the high accuracy of RSP maps predicted by our machine-learning–based method and show its potential feasibility for proton treatment planning and dose calculation.

Publisher

International Journal of Particle Therapy

Subject

Radiology, Nuclear Medicine and imaging,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3