Author:
K. S. ARAVIND ,ANANTA VASHISTH ,P. KRISHANAN ,B.DAS
Abstract
Wheat yield production is largely attributed by weather parameters. Model developed by multiple linear, neural network and penalised regression techniques using weather data have the potential to provide reliable, timely and cost-effective prediction of wheat yield. Wheat yield data and weather parameter during crop growing period (46th to 15th SMW) for more than 30 years were collected for study area and model was developed using stepwise multiple linear regression (SMLR), principal component analysis (PCA) in combination with SMLR, artificial neural network (ANN) alone and in combination with PCA, least absolute shrinkage and selection operator (LASSO) and elastic net (ENET) techniques. Analysis was carried out by fixing 70% of the data for calibration and remaining dataset for validation. On examining these models, LASSO and elastic net are performing excellent having nRMSE value less than 10 % for four out of five location and good for one location, because of prevention in over fitting and reducing regression coefficient by penalization.
Publisher
Association of Agrometeorologists
Subject
Atmospheric Science,Agronomy and Crop Science,Forestry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献