comprehensive approach on predicting the crop yield using hybrid machine learning algorithms

Author:

KRITHIKHA SANJU SARAVANAN ,VELAMMAL BHAGAVATHIAPPAN

Abstract

Crop yield prediction is a complex task which uses historical data to predict how much yield can be obtained in a particular year. To predict accurate crop yield, a novel deep neural network named crop yield predicting deep neural network with XGBoost regression and AdaBoost regression algorithms were used. Further, in this research work, prediction models proposed are hybrid models, namely PCA-XGBoost, PCA-AdaBoost and the LSTM based Stacked Auto Encoder – Crop Yield Predicting Deep Neural Network (LSAE-CYPDNN) model for predicting the crop yield. The error metrics like Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) were evaluated for the hybrid models. The result shows that the proposed hybrid LSAE-CYPDNN model yields much less MAE, MAPE and RMSE compared to the models PCA-AdaBoost and PCA-XGBoost.

Publisher

Association of Agrometeorologists

Subject

Atmospheric Science,Agronomy and Crop Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Semantic Relationship Extraction-based Ontology Construction for Agricultural Domain;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Prediction of crop yield in India using machine learning and hybrid deep learning models;Acta Geophysica;2024-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3