Affiliation:
1. Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
Abstract
Deep neural networks have been used in various machine learning applications and achieved tremendous empirical successes. However, training deep neural networks is a challenging task. Many alternatives have been proposed in place of end-to-end back-propagation. Layer-wise training is one of them, which trains a single layer at a time, rather than trains the whole layers simultaneously. In this paper, we study a layer-wise training using a block coordinate gradient descent (BCGD) for deep linear networks. We establish a general convergence analysis of BCGD and found the optimal learning rate, which results in the fastest decrease in the loss. We identify the effects of depth, width, and initialization. When the orthogonal-like initialization is employed, we show that the width of intermediate layers plays no role in gradient-based training beyond a certain threshold. Besides, we found that the use of deep networks could drastically accelerate convergence when it is compared to those of a depth 1 network, even when the computational cost is considered. Numerical examples are provided to justify our theoretical findings and demonstrate the performance of layer-wise training by BCGD.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献