A new sufficient condition for sparse vector recovery via ℓ1 − ℓ2 local minimization

Author:

Bi Ning12,Tan Jun12,Tang Wai-Shing3

Affiliation:

1. School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China

2. Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China

3. Department of Mathematics, National University of Singapore, Kent Ridge 119076, Republic of Singapore

Abstract

In this paper, we provide a necessary condition and a sufficient condition such that any [Formula: see text]-sparse vector [Formula: see text] can be recovered from [Formula: see text] via [Formula: see text] local minimization. Moreover, we further verify that the sufficient condition is naturally valid when the restricted isometry constant of the measurement matrix [Formula: see text] satisfies [Formula: see text]. Compared with the existing [Formula: see text] local recoverability condition [Formula: see text], this result shows that [Formula: see text] local recoverability contains more measurement matrices.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Analysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iteratively reweighted least squares for block sparse signal recovery with unconstrained l2,p minimization;Analysis and Applications;2024-07-03

2. Sparse recovery with coherent frames via ℓ1−2-analysis;International Journal of Wavelets, Multiresolution and Information Processing;2024-05-29

3. A Reliable Iteration Algorithm for One-Bit Compressive Sensing on the Unit Sphere;Acta Mathematicae Applicatae Sinica, English Series;2024-04-19

4. k-Sparse Vector Recovery via $$\ell _1-\alpha \ell _2$$ Local Minimization;Journal of Optimization Theory and Applications;2024-02-15

5. k-sparse vector recovery via Truncated $$\ell _1-\ell _2$$ local minimization;Optimization Letters;2023-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3