Real-time dynamics acquisition from irregular samples — With application to anesthesia evaluation

Author:

Chui Charles K.1,Lin Yu-Ting23,Wu Hau-Tieng4

Affiliation:

1. Department of Statistics, Stanford University, Stanford, CA 94305, USA

2. Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan

3. Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan

4. Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4, Canada

Abstract

Although most digital representations of information sources are obtained by uniform sampling of some continuous function representations, there are many important events for which only irregular data samples are available, including trading data of the financial market and various clinical data, such as the respiration signals hidden in ECG measurements. For such digital information sources, the only available effective smooth function interpolation scheme for digital-to-analog (D/A) conversion algorithms are mainly for offline applications. Hence, in order to adapt the powerful continuous-function mathematical approaches for real-time applications, it is necessary to introduce an effective D/A conversion scheme as well as to modify the desired continuous-function mathematical method for online implementation. The powerful signal processing tool to be discussed in this paper is the synchrosqueezed continuous wavelet transform (SST), which requires computation of the continuous wavelet transform (CWT), as well as its derivative, of the analog signal of interest. An important application of this transform is to extract information, such as the underlying dynamics, hidden in the signal representation. The first objective of this paper is to introduce a unified approach to remove the two main obstacles for adapting the SST approach to irregular data samples in order to allow online computation. Firstly, for D/A conversion, a real-time algorithm, based on spline functions of arbitrarily desired order, is proposed to interpolate the irregular data samples, while preserving all polynomials of the same spline order, with assured maximum order of approximation. Secondly, for real-time dynamic information extraction from an oscillatory signal via SST, a family of vanishing-moment and minimum-supported spline-wavelets (to be called VM wavelets) are introduced for online computation of the CWT and its derivative. The second objective of this paper is to apply the proposed real-time algorithm and VM wavelets to clinical applications, particularly to the study of the “anesthetic depth” of a patient during surgery, with emphasis on analyzing two dynamic quantities: the “instantaneous frequencies” and the “non-rhythmic to rhythmic ratios” of the patient’s respiration, based on a one-lead electrocardiogram (ECG) signal. Indeed, the “R-peaks” of the ECG signal, which constitute a waveform landmark for clinical evaluation, are non-uniform samples of the respiratory signal. It is envisioned that the proposed algorithm and VM wavelets should enable real-time monitoring of “anesthetic depth”, during surgery, from the respiration signal via ECG measurement.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3