Anti-Nociceptive and Anti-Inflammatory Effects of Angelicae Dahuricae Radix Through Inhibition of the Expression of Inducible Nitric Oxide Synthase and NO Production

Author:

Kang Ok-Hwa1,Chae Hee-Sung1,Oh You-Chang1,Choi Jang-Gi1,Lee Young-Seob1,Jang Hye-Jin1,Kim Jong-Hak1,Kim Youn Chul2,Sohn Dong Hwan2,Park Hyun3,Kwon Dong-Yeul1

Affiliation:

1. Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Iksan, Jeonbuk, Korea

2. Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, Korea

3. Department of Parasitology, College of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea

Abstract

The extract of Angelicae Dahuricae Radix has traditionally been used as an anti-noceptive remedy in China. In this study, the methanol extract of Angelicae Dahuricae Radix (MEAD) was evaluated to determine if it has anti-noceptive and anti-inflammatory action. The anti-nociceptive activities of MEAD were evaluated by determining the writhing response and sleeping time, as well as by a formalin test. In addition, the anti-inflammatory activities of MEAD were evaluated by a vascular permeability test as well as by measuring the carrageenan-induced paw edema and conducting a myeloperoxidase (MPO) assay. MEAD (600 and 1200 mg/kg) exhibited anti-inflammatory effects on acetic acid-induced vascular permeability, carrageenan-induced paw edema, and MPO activity. Moreover, the results of the formalin test, the acetic acid-induced writhing response and the pentobarbital-induced sleeping time indicated that MEAD had anti-nociceptive effects that occurred in a concentration-dependent manner. To determine the mechanism by which MEAD exerted its effects on the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) by treated murine macrophage RAW 264.7 cells was evaluated. Similar to the in vivo activities, both the iNOS expression and NO production were significantly suppressed by MEAD in a dose-dependent manner. Furthermore, MEAD inhibited the activating phosphorylation of ERK1/2. These results provide a scientific basis that explains the mechanism by which Angelicae Dahuricae Radix relieves inflammatory pain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3