Affiliation:
1. Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box: 316 3619995161, Shahrood, Iran
Abstract
Let [Formula: see text] be an associative ring with nonzero identity. The zero-divisor graph [Formula: see text] of [Formula: see text] is the (undirected) graph with vertices the nonzero zero-divisors of [Formula: see text], and distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text]. Let [Formula: see text] and [Formula: see text] be the set of all right annihilators and the set of all left annihilator of an element [Formula: see text], respectively, and let [Formula: see text]. The relation on [Formula: see text] given by [Formula: see text] if and only if [Formula: see text] is an equivalence relation. The compressed zero-divisor graph [Formula: see text] of [Formula: see text] is the (undirected) graph with vertices the equivalence classes induced by [Formula: see text] other than [Formula: see text] and [Formula: see text], and distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text]. The goal of our paper is to study the diameter of zero-divisor and the compressed zero-divisor graph of skew Laurent polynomial rings over noncommutative rings. We give a complete characterization of the possible diameters of [Formula: see text] and [Formula: see text], where the base ring [Formula: see text] is reversible and also has the [Formula: see text]-compatible property.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Domination number of graphs associated with rings;Journal of Algebra and Its Applications;2019-03-01