Automorphisms of the co-maximal ideal graph over matrix ring

Author:

Wang Dengyin1,Chen Li1,Tian Fenglei1

Affiliation:

1. Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China

Abstract

Let [Formula: see text] be a finite field with [Formula: see text] elements, [Formula: see text] be the ring of all [Formula: see text] matrices over [Formula: see text], [Formula: see text] be the set of all nontrivial left ideals of [Formula: see text]. The co-maximal ideal graph of [Formula: see text], denoted by [Formula: see text], is a graph with [Formula: see text] as vertex set and two nontrivial left ideals [Formula: see text] of [Formula: see text] are adjacent if and only if [Formula: see text]. If [Formula: see text], it is easy to see that [Formula: see text] is a complete graph, thus any permutation of vertices of [Formula: see text] is an automorphism of [Formula: see text]. A natural problem is: How about the automorphisms of [Formula: see text] when [Formula: see text]. In this paper, we aim to solve this problem. When [Formula: see text], a mapping [Formula: see text] on [Formula: see text] is proved to be an automorphism of [Formula: see text] if and only if there is an invertible matrix [Formula: see text] and a field automorphism [Formula: see text] of [Formula: see text] such that [Formula: see text] for any [Formula: see text], where [Formula: see text] and [Formula: see text] for [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite commutative rings whose line graphs of comaximal graphs have genus at most two;Hacettepe Journal of Mathematics and Statistics;2024-08-27

2. Automorphism group of the intersection graph of ideals over a matrix ring;Linear and Multilinear Algebra;2020-02-04

3. Automorphisms of the total graph over upper triangular matrices;Journal of Algebra and Its Applications;2019-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3