McCoy property and nilpotent elements of skew generalized power series rings

Author:

Paykan Kamal1,Moussavi Ahmad1

Affiliation:

1. Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box: 14115-134, Tehran, Iran

Abstract

Let [Formula: see text] be a ring, [Formula: see text] a strictly ordered monoid and [Formula: see text] a monoid homomorphism. The skew generalized power series ring [Formula: see text] is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal’cev–Neumann Laurent series rings. In this paper, we consider the problem of determining when [Formula: see text] is nilpotent in [Formula: see text]. We study various annihilator properties and a variety of conditions and related properties that the skew generalized power series [Formula: see text] inherits from [Formula: see text]. We also introduce and study the [Formula: see text]-McCoy condition on [Formula: see text], a generalization of the standard McCoy condition from polynomials to skew generalized power series. We resolve the structure of [Formula: see text]-McCoy rings and obtain various necessary or sufficient conditions for a ring to be [Formula: see text]-McCoy. As particular cases of our general results we obtain several new theorems on the McCoy condition. Moreover various examples of [Formula: see text]-McCoy rings are provided.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Triangulating dimension of skew generalized power series rings;Journal of Algebra and Its Applications;2021-02-05

2. Goldie ranks of skew generalized power series rings;Communications in Algebra;2020-03-09

3. Some characterizations of 2-primal skew generalized power series rings;Communications in Algebra;2020-01-26

4. CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS;B KOREAN MATH SOC;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3