On transfer of annihilator conditions of rings

Author:

Alhevaz Abdollah1,Hashemi Ebrahim1,Mohammadi Rasul2

Affiliation:

1. Department of Mathematics, Shahrood University of Technology, P.O. Box: 316-3619995161, Shahrood, Iran

2. Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Abstract

It is well known that a polynomial [Formula: see text] over a commutative ring [Formula: see text] with identity is a zero-divisor in [Formula: see text] if and only if [Formula: see text] has a non-zero annihilator in the base ring, where [Formula: see text] is the polynomial ring with indeterminate [Formula: see text] over [Formula: see text]. But this result fails in non-commutative rings and in the case of formal power series ring. In this paper, we consider the problem of determining some annihilator properties of the formal power series ring [Formula: see text] over an associative non-commutative ring [Formula: see text]. We investigate relations between power series-wise McCoy property and other standard ring-theoretic properties. In this context, we consider right zip rings, right strongly [Formula: see text] rings and rings with right Property [Formula: see text]. We give a generalization (in the case of non-commutative ring) of a classical results related to the annihilator of formal power series rings over the commutative Noetherian rings. We also give a partial answer, in the case of formal power series ring, to the question posed in [1 Question, p. 16].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3