Affiliation:
1. Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, USA
Abstract
A packing function on a set Ω in Rn is a one-to-one correspondence between the set of lattice points in Ω and the set N0 of non-negative integers. It is proved that if r and s are relatively prime positive integers such that r divides s - 1, then there exist two distinct quadratic packing polynomials on the sector {(x, y) ∈ R2 : 0 ≤ y ≤ rx/s}. For the rational numbers 1/s, these are the unique quadratic packing polynomials. Moreover, quadratic quasi-polynomial packing functions are constructed for all rational sectors.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献