PERFECTLY BOUNDED CLASSES OF ABELIAN GROUPS

Author:

KEEF PATRICK W.1

Affiliation:

1. Department of Mathematics, Whitman College, Walla Walla, WA, 99362, USA

Abstract

Let [Formula: see text] be the class of abelian p-groups. A non-empty proper subclass [Formula: see text] is bounded if it is closed under subgroups, additively bounded if it is also closed under direct sums and perfectly bounded if it is additively bounded and closed under filtrations. If [Formula: see text], we call the partition of [Formula: see text] given by [Formula: see text] a B/U-pair. We state most of our results not in terms of bounded classes, but rather the corresponding B/U-pairs. Any additively bounded class contains a unique maximal perfectly bounded subclass. The idea of the length of a reduced group is generalized to the notion of the length of an additively bounded class. If λ is an ordinal or the symbol ∞, then there is a natural largest and smallest additively bounded class of length λ, as well as a largest and smallest perfectly bounded class of length λ. If λ ≤ ω, then there is a unique perfectly bounded class of length λ, namely the pλ-bounded groups that are direct sums of cyclics; however, this fails when λ > ω. This parallels results of Dugas, Fay and Shelah (1987) and Keef (1995) on the behavior of classes of abelian p-groups with elements of infinite height. It also simplifies, clarifies and generalizes a result of Cutler, Mader and Megibben (1989) which states that the pω + 1-projectives cannot be characterized using filtrations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Invariant on Primary Abelian Groups with Applications to Their Projective Dimensions;Groups, Modules, and Model Theory - Surveys and Recent Developments;2017

2. On separable $\widetilde{p}^{\alpha}$-bounded primary abelian groups;Journal of Commutative Algebra;2014-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3